Posttranscriptional modulation of bacteriophage P22 scaffolding protein gene expression.

نویسندگان

  • S Casjens
  • M B Adams
چکیده

The bacteriophage P22 late operon contains 2 genes whose products are required for cell lysis and 13 genes whose products are involved in the morphogenesis of the phage particle. This operon is under the positive control of the phage gene 23 product and is thought to have a single promoter. The expression of one of these late genes, the scaffolding protein gene, is autogenously modulated independently from the remainder of the late genes. When unassembled, scaffolding protein turns down the rate of synthesis of additional scaffolding protein, and when it is assembled into phage precursor structures, it does not. Experiments presented here show (i) that the mRNA from the scaffolding protein gene is functionally threefold more stable when most of the scaffolding protein is assembled than when it is unassembled and (ii) that no new promoter near the scaffolding protein gene is activated at the high level of synthesis. These data support the model that this autogenous modulation occurs at a posttranscriptional level. We also observed that another message, that of coat protein, appears to become increasingly stable with time after phage infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly specific salt bridges govern bacteriophage P22 icosahedral capsid assembly: identification of the site in coat protein responsible for interaction with scaffolding protein.

UNLABELLED Icosahedral virus assembly requires a series of concerted and highly specific protein-protein interactions to produce a proper capsid. In bacteriophage P22, only coat protein (gp5) and scaffolding protein (gp8) are needed to assemble a procapsid-like particle, both in vivo and in vitro. In scaffolding protein's coat binding domain, residue R293 is required for procapsid assembly, whi...

متن کامل

Fusions of bacteriophage P22 late genes to the Escherichia coli lacZ gene.

The late genes of bacteriophage P22 were fused to lacZ to study their differential expression from the late operon transcript. No instances of posttranscriptional regulation were uncovered, thus supporting the model that the late genes are expressed, by and large, in fixed ratios based on their translational efficiency and message stability.

متن کامل

Early stage P22 viral capsid self-assembly mediated by scaffolding protein: atom-resolved model and molecular dynamics simulation.

Molecular dynamics simulation of an atom-resolved bacteriophage P22 capsid model is used to delineate the underlying mechanism of early stage P22 self-assembly. A dimer formed by the C-terminal fragment of scaffolding protein with a new conformation is demonstrated to catalyze capsomer (hexamer and pentamer) aggregation efficiently. Effects of scaffolding protein/coat protein binding patterns a...

متن کامل

Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid.

Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter approximate...

متن کامل

Unraveling the role of the C-terminal helix turn helix of the coat-binding domain of bacteriophage P22 scaffolding protein.

Many viruses encode scaffolding and coat proteins that co-assemble to form procapsids, which are transient precursor structures leading to progeny virions. In bacteriophage P22, the association of scaffolding and coat proteins is mediated mainly by ionic interactions. The coat protein-binding domain of scaffolding protein is a helix turn helix structure near the C terminus with a high number of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 53 1  شماره 

صفحات  -

تاریخ انتشار 1985